3 research outputs found

    Reef Cover, a coral reef classification for global habitat mapping from remote sensing

    Get PDF
    Coral reef management and conservation stand to benefit from improved high-resolution global mapping. Yet classifications underpinning large-scale reef mapping to date are typically poorly defined, not shared or region-specific, limiting end-users’ ability to interpret outputs. Here we present Reef Cover, a coral reef geomorphic zone classification, developed to support both producers and end-users of global-scale coral reef habitat maps, in a transparent and version-based framework. Scalable classes were created by focusing on attributes that can be observed remotely, but whose membership rules also reflect deep knowledge of reef form and functioning. Bridging the divide between earth observation data and geo-ecological knowledge of reefs, Reef Cover maximises the trade-off between applicability at global scales, and relevance and accuracy at local scales. Two case studies demonstrate application of the Reef Cover classification scheme and its scientific and conservation benefits: 1) detailed mapping of the Cairns Management Region of the Great Barrier Reef to support management and 2) mapping of the Caroline and Mariana Island chains in the Pacific for conservation purposes

    How Much Shallow Coral Habitat Is There on the Great Barrier Reef?

    Get PDF
    Australia’s Great Barrier Reef (GBR) is a globally unique and precious national resource; however, the geomorphic and benthic composition and the extent of coral habitat per reef are greatly understudied. However, this is critical to understand the spatial extent of disturbance impacts and recovery potential. This study characterizes and quantifies coral habitat based on depth, geomorphic and benthic composition maps of more than 2164 shallow offshore GBR reefs. The mapping approach combined a Sentinel-2 satellite surface reflectance image mosaic and derived depth, wave climate, reef slope and field data in a random-forest machine learning and object-based protocol. Area calculations, for the first time, incorporated the 3D characteristic of the reef surface above 20 m. Geomorphic zonation maps (0–20 m) provided a reef extent estimate of 28,261 km2 (a 31% increase to current estimates), while benthic composition maps (0–10 m) estimated that ~10,600 km2 of reef area (~57% of shallow offshore reef area) was covered by hard substrate suitable for coral growth, the first estimate of potential coral habitat based on substrate availability. Our high-resolution maps provide valuable information for future monitoring and ecological modeling studies and constitute key tools for supporting the management, conservation and restoration efforts of the GBR

    Workflow for the generation of expert-derived training and validation data: a view to global scale habitat mapping

    Get PDF
    Our ability to completely and repeatedly map natural environments at a global scale have increased significantly over the past decade. These advances are from delivery of a range of on-line global satellite image archives and global-scale processing capabilities, along with improved spatial and temporal resolution satellite imagery. The ability to accurately train and validate these global scale-mapping programs from what we will call “reference data sets” is challenging due to a lack of coordinated financial and personnel resourcing, and standardized methods to collate reference datasets at global spatial extents. Here, we present an expert-driven approach for generating training and validation data on a global scale, with the view to mapping the world’s coral reefs. Global reefs were first stratified into approximate biogeographic regions, then per region reference data sets were compiled that include existing point data or maps at various levels of accuracy. These reference data sets were compiled from new field surveys, literature review of published surveys, and from individually sourced contributions from the coral reef monitoring and management agencies. Reference data were overlaid on high spatial resolution satellite image mosaics (3.7 m × 3.7 m pixels; Planet Dove) for each region. Additionally, thirty to forty satellite image tiles; 20 km × 20 km) were selected for which reference data and/or expert knowledge was available and which covered a representative range of habitats. The satellite image tiles were segmented into interpretable groups of pixels which were manually labeled with a mapping category via expert interpretation. The labeled segments were used to generate points to train the mapping models, and to validate or assess accuracy. The workflow for desktop reference data creation that we present expands and up-scales traditional approaches of expert-driven interpretation for both manual habitat mapping and map training/validation. We apply the reference data creation methods in the context of global coral reef mapping, though our approach is broadly applicable to any environment. Transparent processes for training and validation are critical for usability as big data provide more opportunities for managers and scientists to use global mapping products for science and conservation of vulnerable and rapidly changing ecosystems
    corecore